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A bundle-of-tubes construct is used as a model system to study ensemble averaged equations for multi-
phase flow in a porous material. Momentum equations for the fluid phases obtained from the method are
similar to Darcy’s law, but with additional terms. We study properties of the additional terms, and the
conditions under which the averaged equations can be approximated by the diffusion model or the
extended Darcy’s law as often used in models for multiphase flows in porous media. Although the bun-
dle-of-tubes model is perhaps the simplest model for a porous material, the ensemble averaged equation
technique developed in this paper assumes the very same form in more general treatments described in
Part 2 of the present work (Zhang, D.Z., 2009. Ensemble Phase Averaged Equations for Multiphase Flows
in Porous Media, Part 2: A General Theory. Int. J. Multiphase Flow 35, 640–649). Any model equation sys-
tem intended for the more general cases must be understood and tested first using simple models. The
concept of ensemble phase averaging is dissected here in physical terms, without involved mathematics
through its application to the idealized bundle-of-tubes model for multiphase flow in porous media.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction of Washburn (1921). This approach is mainly used to model liquid
Flow of immiscible fluids in various porous materials is of spe-
cial importance to soil science, chemical, environmental, construc-
tion, and petroleum industries. In these systems, capillary action
plays a crucial role in driving the motion of fluids within the por-
ous media (Washburn, 1921; Richards, 1931; Scheidegger, 1974;
Ianson and Hoff, 1986; Hall et al., 1984; Gray and Hassanizadeh,
1991; Liu, 1991; Hassanizadeh and Gray, 1993; Alava et al.,
2004; Faybishenko, 2004). Extensive theoretical investigations
and advanced experimental techniques, such as neutron radiogra-
phy, have been applied to study the motion of the fluids
(Gummerson et al., 1979; Hassanizadeh and Gray, 1993; Moseley
and Dhir, 1996; Beliaev and Hassanizadeh, 2001; Gray et al.,
2002; Lockington and Parlange, 2003; Tsakiroglou et al., 2003;
Culligan et al., 2004; Shiozawa and Fujimaki, 2004; El Abd et al.,
2005; Manthey et al., 2005; Le Guen and Kovscek, 2006; Hilfer,
2006; Czachor, 2007; Hall, 2007). Despite intensive interrogation,
models for such flows are still largely empirical. Typically, the
motion of fluids in a porous material are assumed either to be
nonlinear diffusion processes (Lockington and Parlange, 2003;
Pachepsky et al., 2003; El Abd et al., 2005), or to obey the same
Darcy’s law as in a single phase flow (Richards, 1931; Brooks and
Corey, 1964). The diffusion approach is based on the early work
ll rights reserved.

: +1 505 665 5926.
imbibition in porous solids. The main focus for this model is liquid
motion, while the motion of the other fluid, typically a gas, is not
emphasized. In this paper we explain the reason why the diffusion
approach is more successful in liquid-gas systems than in liquid-li-
quid systems. In the Darcy’s law approach, each fluid in the porous
material is driven by the pressure gradient. The application of
Darcy’s law to multiphase flows in porous materials is a significant
extension of Darcy’s law originally developed for a single phase
flow in porous materials. For the cases of two-phase flow, this
extension requires a closure model to describe the pressure differ-
ence between phases. The pressure difference is usually taken to be
the capillary pressure (Leverett, 1941) with an implicit assumption
that the pressure difference is caused solely by the interfacial sur-
face tension between fluids. In liquid-gas two-phase flows, it was
originally thought that the pressure difference was only a function
of the liquid saturation. Later, experimental observations found
that the pressure difference exhibits more complicated characters.
The validity of both the diffusion approach and extensions of
Darcy’s law have been questioned (Gummerson et al., 1979; Hillel,
1980; Hassanizadeh and Gray, 1993; Prat, 1995; Lockington and
Parlange, 2003; Tsakiroglou et al., 2003; Shiozawa and Fujimaki,
2004; Hilfer, 2006; Le Guen and Kovscek, 2006; Czachor, 2007;
DiCarlo, 2007; Hall, 2007).

To develop equations describing the motion of fluids in por-
ous materials, the multiphase flows in a porous material are
treated as special cases of multi-material interactions involving
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two fluid phases and one porous solid phase using ensemble
phase averaging method (Zhang et al., 2007; Zhang, 2009). The
closure relations associated with the averaged equations are ex-
pressed as averages of the interactions on phase interfaces. The
averaged equations derived this way are in a form similar to
the extended Darcy’s law, but with additional terms. The presen-
tation of this work is divided into two parts appearing as sepa-
rate papers in this Journal. In Part 1, we illustrate the
ensemble phase averaging method using a simple but meaning-
ful example. General theory for multiphase flows in porous
material is described in Part 2 (Zhang, 2009).

This paper is Part 1, in which we apply the ensemble averaging
method to a bundle-of-tubes model for two-phase flows in porous
materials. The main objective of this paper is to understand the
additional terms that arise in the averaged equations, and to study
their properties and the possible closure of the equations using this
simple example. Although a typical porous material has a much
more complex morphology than that captured by the bundle-of-
tubes model, the model does possess a unique advantage of being
conceptually simple and amenable to analytical solution. This
porous material model has been used by Dahle et al. (2005) to
study the behavior of the capillary pressure. By using the bundle-
of-tubes model, we hope to explain the physical meaning of the
closure relationships.

We will show that, despite of its simplicity, dissecting the aver-
aged equations associated with the bundle-of-tubes model pro-
vides interesting insight into characteristics common to more
complex porous materials. From the point view of the averaged
equations, any theoretical model intended for describing two-
phase flows should first be validated in a simple system such as
this. The study of this simple bundle-of-tubes provides a starting
point to study more general cases described in Part 2 of the present
work.

2. Flow in capillary tubes

We consider a one-dimensional two-phase flow in a porous
material consisting of parallel capillary tubes with various diame-
ters as shown in Fig. 1. Let L be the length of the capillary tubes, /
be the diameters of the capillary tube, and b be the contact angle of
fluid 1 on the solid wall, measured from the solid wall in contact
with fluid 1 to the interface between fluids 1 and 2. For capillary
tubes, the curvature radius a of the fluid interface can be calculated
as a = //(2cos b). In this example, we suppose that there is a reser-
voir of fluid 1 on the left of the capillary tubes. Initially the capil-
lary tubes are filled with fluid 2 and are connected to a reservoir
of fluid 2 on the right ends. Let pL and pR denote the pressures in
Fig. 1. The illustration of ensemble of capillaries with different diameters.
left and right reservoirs, respectively, as illustrated in Fig. 1. Inside
a given capillary tube the flow is a Poiseuille flow, except for in the
region close to the interface between two phases. The momentum
equations can be written as

32l1

/2
�u1 ¼ �rp1 ¼

pL � p1ðxIÞ
xI

; x < xI ð1Þ

and

32l2

/2
�u2 ¼ �rp2 ¼

p2ðxIÞ � pR

L� xI
; x > xI; ð2Þ

where l1 and l2 are viscosities, �u1 and �u2 are velocities of fluids 1
and 2 averaged over the tube cross section, p1(x) and p2(x) are pres-
sures for fluids 1 and 2 within the tube, xI is the interface location as
measured from the left end of the capillary tube. Because of the cur-
vature of the fluid interface in a capillary tube, the interface location
can only be determined within an error of order of the diameter of
the tube. In this example we assume that the length of the tube is
much greater than the tube diameter, L� /. As a consequence of
this assumption, an error of order //L is expected in the quantities
calculated in this paper. In formulating the equations above we
have used the fact that the diameter of a tube is independent of
location x, and the pressures vary linearly in a tube within a given
fluid. Across the fluid interface, the pressure difference caused by
surface tension is

p2ðxIÞ � p1ðxIÞ ¼ 2C21=a ¼ 4C21 cos b=/: ð3Þ

Continuity of the fluid phases requires �u1 ¼ �u2 in a capillary
tube. Using this relation, we can eliminate the pressures p1 and
p2 at the interface from (1) and (2), and find

�u1 ¼ �u2 ¼
/2Dpþ 4C21/ cos b

32l1xI þ 32l2ðL� xIÞ
; ð4Þ

where Dp = pL � pR is the pressure difference between the reser-
voirs at the ends of the capillary tubes.

For simplicity, we assume Dp P 0 and C21 P 0, hence the veloc-
ity of the invading fluid 1 increases with the capillary diameter.
The interface location can be calculated by solving dxI=dt ¼ �u1.
The solution is

/ð/Dpþ 4C21 cos bÞt ¼ 16l1x2
I þ 16l2ð2LxI � x2

I Þ: ð5Þ

This solution relates the penetration of fluid 1 to the diameter of
the capillary tube. Given a fluid interfacial position x and time t, we
can use (5) to find a diameter /(x, t) of the tubes that the fluid
interfaces are in. For a capillary tube with a specified diameter /,
one can also use (5) to find the location of the fluid interface in
the tube, xI(/, t). The interface location xI(/, t) is an increasing func-
tion of /. The pressure within a capillary tube is found by substi-
tuting (4) into Eqs. (1) and (2)

p1ðx; t;/Þ ¼ pL �
l1ðDpþ 4C21 cos b=/Þx

l1xIð/; tÞ þ l2½L� xIð/; tÞ�
; x < xI ð6Þ

and

p2ðx; t;/Þ ¼ pR þ
l2ðDpþ 4C21 cos b=/ÞðL� xÞ
l1xIð/; tÞ þ l2½L� xIð/; tÞ�

; x > xI: ð7Þ

These results are obtained based on the Poiesuille flow in a
circular capillary tube. Near a fluid interface the flow is not a
true Poiesuille flow and the pressures are different. The size of
the region where the pressures differ significantly is of the order
of the diameter of the capillary tube. When pressures derived
from (6) and (7) are used to calculate the average pressures, or
the phase interaction forces, an error of order //L should be
expected.
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3. Ensemble phase averaged equations

With the analytical solutions for pressures and velocities listed
above, we can apply the ensemble phase averaging method to
study properties of the resulting closure quantities in this simple
geometry. The ensemble phase averaging method has been used
previously to derive averaged equations for disperse multiphase
flows (Zhang and Prosperetti, 1994, 1997). The method has also
been extended for continuous multiphase flows with infinite
number of degrees of freedom in the system (Zhang et al.,
2007). In the ensemble phase averaging method, at a given loca-
tion x and time t, the average of a quantity pertaining to a spec-
ified phase is calculated by averaging over all the flow
realizations in which the specified location is occupied by that
phase at the time. Although a general derivation of the averaged
equations has been developed in Part 2 of this work (Zhang,
2009), for the simple bundle-of-tubes geometry the derivation
of the ensemble phase averaged equations can be significantly
simplified. This simplified derivation illustrates the physical inter-
actions on the phase interfaces with much fewer mathematical
steps. In this section we present this derivation. For general der-
ivations, readers are referred to the cited work (Zhang et al.,
2007; Zhang, 2009).

In the ensemble averaging method, the volume fraction h1 of
fluid 1 at any point is calculated as the probability of the point occu-
pied by the fluid. In the simple bundle-of-tubes model, this proba-
bility can be calculated geometrically as the ratio of the cross
section area of the capillary tubes containing fluid 1 to the total
area, AT, of the cross section. Let NT be the total number of tubes
in the cross section and P(/) be the probability distribution of the
tube diameters. For a specified location x and time t, the penetration
depth of the invading fluid increases with the diameter of the tube.
Thus fluid 1 will only occupy capillary tubes with a diameter larger
than the /(x, t) calculated from (5) by replacing xI with x. The
respective areas occupied by fluids 1 and 2 in the cross section are

A1 ¼ NT

Z 1

/ðx;tÞ

p/2

4
Pð/Þd/; A2 ¼ NT

Z /ðx;tÞ

0

p/2

4
Pð/Þd/; ð8Þ

and their volume fractions of fluids 1 and 2 can be calculated as
hi(x, t) = Ai/AT, or

h1ðx; tÞ ¼ nA

Z 1

/ðx;tÞ

p/2

4
Pð/Þd/; h2ðx; tÞ ¼ nA

Z /ðx;tÞ

0

p/2

4
Pð/Þd/;

ð9Þ

where nA = NT/AT is the number of the tubes per unit cross section
area. The gradient of the volume fractions can be calculated as

rh1ðx; tÞ ¼ �rh2ðx; tÞ ¼ �nA
p/2

4
Pð/Þ o/ðx; tÞ

ox
: ð10Þ

The degree of saturation for fluid i can be defined as Si = hi/
(h1 + h2) for i = 1, 2. Then,

S1ðx; tÞ ¼
Z 1

/ðx;tÞ
/2Pð/Þd/

,Z 1

0
/2Pð/Þd/;

S2ðx; tÞ ¼
Z /ðx;tÞ

0
/2Pð/Þd/

�Z 1

0
/2Pð/Þd/: ð11Þ

For a given position and time, the average of a quantity pertain-
ing to a phase is then calculated by averaging over all possible val-
ues of that quantity for which the spatial position of interest is
occupied by the phase at the specified time. In this bundle-of-tubes
model, the chance of a tube being selected as a sample is propor-
tional to its cross section area. Hence in this example, the ensemble
phase average of a quantity becomes a cross section area weighted
average. Again, since the invading fluid only occupies the tubes
with diameter greater than /(x, t), the average pressure hp1i, the
average pressure gradient, and the average velocity hu1i can be cal-
culated as

hp1i ¼
Z 1

/ðx;tÞ

p/2

4
p1ðx; t;/ÞPð/Þd/

,Z 1

/ðx;tÞ

p/2

4
Pð/Þd/; ð12Þ

hrp1i ¼
Z 1

/ðx;tÞ

p/2

4
rp1ðx; t;/ÞPð/Þd/

,Z 1

/ðx;tÞ

p/2

4
Pð/Þd/; ð13Þ

hu1i ¼
Z 1

/ðx;tÞ

p/2

4
�u1ðx; t;/ÞPð/Þd/

,Z 1

/ðx;tÞ

p/2

4
Pð/Þd/: ð14Þ

Similarly the receding fluid occupies the tubes with the diame-
ter less than /(x, t), the cross section area weighted averages for
the pressure, the pressure gradient and the velocity are given by

hp2i ¼
Z /ðx;tÞ

0

p/2

4
p2ðx; t;/ÞPð/Þd/

,Z /ðx;tÞ

0

p/2

4
Pð/Þd/; ð15Þ

hrp2i ¼
Z /ðx;tÞ

0

p/2

4
rp2ðx; t;/ÞPð/Þd/

,Z /ðx;tÞ

0

p/2

4
Pð/Þd/;

ð16Þ

hu2i ¼
Z /ðx;tÞ

0

p/2

4
�u1ðx; t;/ÞPð/Þd/

,Z /ðx;tÞ

0

p/2

4
Pð/Þd/: ð17Þ

The volume fractions and averages defined above, can be used
to derive averaged equations. Using (9), we find

h1ðx; tÞhp1iðx; tÞ ¼ nA

Z 1

/ðx;tÞ

p/2

4
p1ðx; t;/ÞPð/Þd/; ð18Þ

where we employ the notation hp1iðx; tÞ ¼ hp1ðx; t;/Þi. Upon differ-
entiation of (18) with respect to x, and using (9), (10), (12), and (13),
we find

h1rhp1i ¼ h1hrp1i þ ½hp1iI � hp1i�rh1; ð19Þ

where hp1iI ¼ p1ðx; t;/ðx; tÞÞ is the pressure of fluid 1 on the phase
interface with fluid 2. The gradientrhp1i can be viewed as the slope
of the increase in the average pressure from location x to location
x + Dx for an infinitesimal Dx. The average pressure hp1iðx; tÞ is cal-
culated by averaging over the pressures in the tubes in which the
point x is occupied by fluid 1 at time t. Since fluid 1 occupies differ-
ent sets of tubes in location x and x + Dx, the average pressures
hp1iðxþ Dx; tÞ and hp1iðx; tÞ are calculated using the pressures taken
from different sets of tubes. As the location changes from x to x + Dx
the set of tubes used to calculate the average pressure may gain
additional tubes or lose tubes. If the pressure p1 in the gained or lost
tubes is greater than the average pressure hp1i, (i.e. p1 � hp1i > 0),
then the process of gaining the tubes increases the average pressure
hp1i; and the process of losing tubes decreases the average pressure.
In the gained tubes, x + Dx is in fluid 1 but not x. Similarly, in the
lost tubes, x is in fluid 1 but not x + Dx. Since Dx is infinitesimal,
in these gained or lost tubes x can be regarded on the interface be-
tween the fluids; and then p1 is the pressure on the fluid interface.
This change in the set of the tubes occupied by fluid 1 is represented
by the volume fraction gradient rh1. The last term of (19) accounts
for this contribution to the average pressure increase due to the
pressure difference hp1iI � hp1i on the phase interface and the vol-
ume fraction gradient rh1 representing the change of the tube sets
from x to x + Dx. The first term on the right hand side of (19) ac-
counts for the average pressure increase due to the pressure change
inside fluid 1 itself. Relation (19) implies that in the ensemble phase



Table 1
Parameters for bundle of tube models. The values of the dimensionless L, l and C are
equal to 1.

Parameter Description Value

L Length or tube 1
l1 Viscosity of fluid 1 1
C Surface tension 1
/s Lower cut-off pore diameter 10�8L
/L Upper cut-off pore diameter 10�3L
b Contact angle 0 (rad)
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averaging method, the average operator and the differentiation
operator do not commute. To commute them a term

F12 ¼ ½hp1iI � hp1i�rh1 ð20Þ

is needed in (19).
Averaging over the momentum equation (1) and then using

(19), we obtain

nA

Z 1

/ðx;tÞ
8l1p�u1Pð/Þd/ ¼ �h1hrp1i ¼ �h1rhp1i þ F12: ð21Þ

Averaged momentum equation (21) shows that the flow in a
porous media is driven by the average of the pressure gradient
hrp1i, not by the gradient rhp1i of the average pressure as in
the extended Darcy’s law for multiphase flows. Since these two
quantities are different, but related by (19), the term F12 is needed
to correct the extended Darcy’s law.

The left hand side of Eq. (21) represents the viscous drag acting
on fluid 1. If we write the viscous drag on the left hand side of (21)
as h1C1sl1hu1i then the drag coefficient can be calculated as

C1s ¼
Z 1

/ðx;tÞ
32�u1Pð/Þd/

,Z 1

/ðx;tÞ
/2�u1ðx; t;/ÞPð/Þd/: ð22Þ

With this definition, we have the averaged momentum equa-
tion for fluid 1

h1C1sl1hu1i ¼ �h1rhp1i þ F12: ð23Þ

Similarly, the averaged momentum equation and the drag coef-
ficient for fluid 2 can be written in the similar forms,

h2C2sl2hu2i ¼ �h2rhp2i þ F21; ð24Þ

C2s ¼
Z /ðx;tÞ

0
32�u2Pð/Þd/

�Z /ðx;tÞ

0
/2�u2ðx; t;/ÞPð/Þd/; ð25Þ

with F21 defined as

F21 ¼ ½p2ðx; t;/ðx; tÞÞ � hp2i�rh2 ¼ �½hp2iI � hp2i�rh1; ð26Þ

where hp2iI ¼ p2ðx; t;/ðx; tÞÞ is the pressure of fluid 2 on the inter-
face. Using (20) and (26), and noting that p1ðx; t;/ðx; tÞÞ and
p2ðx; t;/ðx; tÞÞ are evaluated at the interface, we find

F12ðx; tÞ þ F21ðx; tÞ ¼ ½hp2iðx; tÞ � hp1iðx; tÞ � 4C21 cos b=/ðx; tÞ�rh1

ð27Þ

after using (3).
Although in this paper we derived momentum equations (23)

and (24) in the bundle-of-tubes model for a porous material, the
functional forms of these momentum equations are quite general
since similar equations are obtained in a more general treatment
(see Part 2) after neglecting inertial terms.

If Darcy’s law were assumed to be valid for each fluid phase, the
force densities F12 and F21 have to vanish simultaneously implying
hp2i � hp1i ¼ 4C21 cos b=/ðx; tÞ. This is in agreement with the origi-
nal concept of capillary pressure. According to Dahle et al. (2005),
the quantity 4C21 cos b=/ðx; tÞ is a static part of the capillary pres-
sure; and hp2i � hp1i � 4C21 cos b=/ðx; tÞ is a dynamic part of the
capillary pressure. Eqs. (23) and (24) show that the dynamic part
of the capillary pressure not only affects the pressure difference
but also presents itself as a term in the momentum equations.

These momentum equations together with the continuity
equations

ohi

ot
þr � ðhihuiiÞ ¼ 0; i ¼ 1;2 ð28Þ

and the condition h1 + h2 = hp, where hp is the porosity, form a closed
system of equations provided closure relations for hp2i � hp1i and
F12 or F21 can be found. The closure relations for these quantities
need to be expressed in terms of macroscopic quantities, such as
average pressure of a phase and average velocities. For the simple
bundle-of-tubes model, we obtain the closure relations using the
analytical solution for flows in the tubes. For more complex pore
morphologies, numerical results can be used for this purpose. How-
ever, even with the numerical results the averaging method does
not give the functional forms for these closure quantities, but it
does provide an explicit way to calculate the closure relationship
using related quantities evaluated at the phase interfaces. This is
a significant advantage of the averaging method. Although for a
given practical problem if the flow details in the pores can be
numerically calculated, the calculation of closure quantities is not
practically useful to the problem itself. It is hoped that by explicitly
calculating and studying the closure quantities in a few selected
(simple) cases, one can obtain better understanding of the transport
process and then formulate physically-based closure models for
more complicated cases.

4. Properties of the closure relationships

In the bundle-of-tubes model, the key closure quantities, (i.e.
the pressure difference, the drag coefficients, and the force densi-
ties F12 and F21), can be calculated explicitly for a specified tube
diameters distribution P(/). In this section, we take this advantage
and calculate the closure quantities. To facilitate the study of the
relative magnitudes of the terms in the averaged equations, we
non-dimensionalize the key terms. Length is non-dimensionalized
by the characteristic length L of the capillary tube; force is non-
dimensionalized by C21L; and time is non-demensionalized by
l1L/C21. The length of the capillary tube, the viscosity of fluid 1
and the surface tension between the fluids are thereby set to unity.
Table 1 shows the value of other quantities under this non-dimen-
sionalization scheme. In the following calculations, we assume that
the probability distribution for the tube diameters is uniform be-
tween the smallest pore size /s and the largest pore size /L as

Pð/Þ ¼ 1=ð/L � /SÞ: ð29Þ
4.1. Receding fluid with negligible viscosity

We first study a case in which the viscosity of fluid 2 is negligi-
ble and the pressures in both reservoirs are set to zero. This case
resembles the scenario in which water replaces air in the capillary
tubes at ambient conditions. Since the fluid 2 is inviscid, we have
p2 ¼ hp2i is a constant and F21 = 0. For simplicity, the constant pres-
sure p2 can be set to zero for incompressible fluid 2. Using (27) we
have

F12 ¼ �½hp1iðx; tÞ � hp2i þ 4C21 cos b=/ðx; tÞ�rh1: ð30Þ

Although hp2i is set to zero, we intentionally leave it in (30) to
remind readers that only the pressure difference, not the absolute
pressure, is important in this case of incompressible fluids in rigid
tubes. The results shown in the figures of this subsection are ob-
tained with pressure p2 set to zero; therefore whenever the
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pressure p1 is mentioned in the text or in the figure, it should be
understood as the pressure difference.

In this case, the interface location x in a specified tube can be
solved from (5) and is proportional to the square root of time

ffiffi
t
p

.
As a consequence, at a given x and t, the pressure p1(x, t) for fluid
1 as calculated in (6) can be expressed in terms of the grouping
x=

ffiffi
t
p

. The same is true for the tube diameter / solved from (5),
the volume fraction h1 calculated using (9), the averaged pressure
of fluid 1 hp1i calculated using (12), and the drag coefficient C1s cal-
culated using (22). The volume fraction, the saturation (defined as
S1 = h1/(h1 + h2)), the drag coefficient, the average pressure, and the
tube diameter can all be expressed as a single valued functions of
x=

ffiffi
t
p

for different time t, as shown in Fig. 2. Similar profiles of S1 vs.
x=

ffiffi
t
p

are commonly reported for water imbibition in building
materials (Hall et al., 1984; Lockington and Parlange, 2003; El
Abd et al., 2005; Ridgway et al., 2006; Hall, 2007).

Fig. 2(c), the plot of hp1i vs. x=
ffiffi
t
p

, suggests that the ensemble
averaged pressure hp1i is not a monotonic function of x=

ffiffi
t
p

. The re-
sponse seen in Fig. 2(c) can be rationalized by referring to Fig. 1
and recalling that in this case both pL and pR are zero. For a speci-
fied time, ensemble averaging over the tubes at small values of x
involves tubes (of various diameters) that all contain the invading
fluid 1. Within each of these individual tubes the pressure de-
creases with increasing x. Thus the ensemble averaged pressure
decreases with increasing x in this regime. However, when the
ensemble average is performed at larger values of x, the tubes con-
taining the invading fluid 1 are those tubes of larger diameter. This
is a consequence of the fact that the velocity of invading fluid is
slower in the smaller diameter tubes and thus at the specified time,
and large enough values of x, the small diameter tubes are not yet
filled by the invading fluid. At even larger values of x, only the very
largest diameter tubes are filled with fluid 1. In such tubes the
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Fig. 2. The correlations of S1 vs. x=
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(a), / vs.x=
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(b), hp1i vs.
pressure drop due to friction with walls is relatively small com-
pared to that in smaller tubes; and the pressure in forefront of
the invading fluid is close to the pressure on the fluid interface,
which is �4C21 cos b//(x, t), an increasing function of x, because
/(x, t) increases with x. Only the filled tubes are counted in the
ensemble phase averaging procedure used in the calculation of
the average pressure of fluid 1. The resulting ensemble average
then increases with x as shown in Fig. 2(c). In this case, the ex-
tended Darcy’s law is invalid in the forefront of the invading fluid
since it would predict negative velocities for fluid 1, if used. Diffi-
culties associated with direct application of Darcy’s law to two-
phase flows in a porous medium have been recognized previously
(Hall et al., 1996; Nordbotten et al., 2008). In an attempt to amend
Darcy’s law, a ‘‘macroscopic pressure” is sometimes defined as a
linear combination of the spatial derivatives of the volume aver-
aged pressure of various orders (Nordbotten et al., 2008). In the
case of this bundle-of-tubes model, the ensemble phase average
can be regarded as a volume average with the representative vol-
ume being a slab perpendicular to the tube direction with infinites-
imal thickness in the direction of flow. For the case of inviscid fluid
2, the ‘‘macroscopic pressure” of the fluid vanishes, and flux of fluid
1 is then proportional the gradient of the ‘‘macroscopic pressure”
of fluid 1 according to Eq. (33) of Nordbotten et al. (2008). Since
the flux is positive in this example, this requires the gradient of
the ‘‘macroscopic pressure” of fluid 1 to be negative. However, as
shown in Fig. 2(c), the gradient of ensemble phase averaged pres-
sure, which equals to the intrinsic volume averaged pressure, is po-
sitive. In other words, the gradient of the so-called ‘‘macroscopic
pressure” and the gradient of the intrinsic volume averaged pres-
sure have different signs; while the lowest order approximation
to the ‘‘macroscopic pressure” is thought to be the intrinsic average
pressure (Nordbotten et al., 2008).
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From (11) we find that saturation S1 can be written as a single-
valued function of diameter /. As mentioned above the diameter /
(x, t) is a single-valued function of x=

ffiffi
t
p

. Therefore the variable
x=

ffiffi
t
p

can also be regarded as a single-valued function of the fluid
1 saturation S1 in the region where the saturation 0 < S1 < 1, as
shown in Fig. 2(a). In this region, the diameter /(x, t), the averaged
pressure hp1i and the drag coefficient C1s can be expressed as sin-
gle-valued functions of the volume fraction h1, or saturation S1.
With these relations we can rewrite the momentum equation for
fluid 1 as

h1hu1i ¼ �D1ðS1ÞrS1; 0 < S1 < 1; ð31Þ

where

D1ðS1Þ ¼
hp

C1sðS1Þl1
S1

dhp1i
dS1

þ hp1iðS1Þ � hp2i þ 4C21 cos b=/ðS1Þ
� �

:

ð32Þ
In this way the volume flux h1hu1i per unit cross section area

can be expressed in a form similar to Fick’s law of diffusion with
a saturation-dependent diffusion coefficient D1(S1). This imbibition
flow can be described as a diffusion process because the averaged
pressure difference hp1iðS1Þ � hp2i, the surface tension term
4C21 cos b//, and the drag coefficient C1s depend only on the satu-
ration. This explains the success of the diffusion approach in mod-
eling imbibition of liquids when gas viscosity is negligible
(Washburn, 1921). However, this condition is only satisfied in
the cases where the viscosity of the receding fluid is negligible
and in the region where S1 is less than one. In cases where S1 = 1,
as shown in Fig. 2(a), we have rS1 ¼ 0, while the fluid flux
h1hu1i > 0; therefore (31) is incorrect. In this region, F12 = 0 accord-
ing to (20), and thus the fluid is purely driven by the pressure gra-
dient term in the momentum equation (23). Indeed, in this region,
the average pressure hp1i decreases linearly with x as shown in
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Fig. 3. The correlations of D1/hp vs. S1 (a), hp1iI � hp1i v
Fig. 2(c) while the saturation remains constant. The derivative
dhp1i=dS1 then becomes undefined and the diffusivity defined by
(32) becomes infinity as shown in Fig. 3(a). This explains that many
reported experimental values for D1 increase significantly (as much
as 104 times), as the saturation approaches unity (Meyer and War-
rick, 1990; El Abd et al., 2005). The fact that the diffusivity becomes
undefined in the region of full saturation, highlights a limitation of
the diffusion approach of describing fluid imbibition processes in
porous materials.

This example demonstrates the importance of the additional
force density term, F12, in the ensemble averaged momentum
equation (23). The force density F12 can be calculated from the
pressure difference hp1iI � hp1i by using (20). In Fig. 3(b)–(d), the
relation between the pressure difference hp1iI � hp1i, the surface
tension, and the drag coefficient are plotted as functions of the sat-
uration S1 of fluid 1. In this case of negligible viscosity of fluid 2, all
of these closure quantities for fluid 1 are single-valued functions of
S1.

4.2. Receding fluid with finite viscosity

In this subsection we study a case in which the pressure differ-
ence between reservoirs is still zero, but viscosity l2 of fluid 2 is
not negligible. The viscosity ratio, l2/l1 between fluid 2 and fluid
1 is set to be in a range from 0.01 to 1. In this case, surface tension
generates the pressure gradient needed to drive fluid 2, hence
p2 > 0 and hp2i > 0. Fig. 4(a) plots the average pressures as a func-
tion of x at different time t. We note that there are kinks in the
curves for the average pressure hp2i of fluid 2. The curve for the
average pressure hp1i stops at the x-coordinate of the kink point
for the corresponding average pressure hp2i. This kink point is
the deepest penetration for the invading fluid at the specified time.
After that point, the fluid 1 is not present and the average pressure
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of fluid 1 is undefined. After the kink, the average pressure hp2i var-
ies linearly with x. To explain this phenomenon, we note that sim-
ilar to Eq. (19), we have

h2rhp2i ¼ h2hrp2i þ ½hp2iI � hp2i�rh2; ð33Þ

where hp2iI is the pressure of fluid 2 at the phase interface. When x
is larger than the x-coordinate of the kink point, all the tubes are
filled with fluid 2, and rh2 ¼ 0. In each tube, according to (2), the
pressure gradient rp2 is independent of x, and so is its average
hrp2i. The gradient of the averaged pressure calculated from (33)
is then independent of x; and hp2i varies linearly with x as shown
in Fig. 4(a). In the coexisting region for both phases, the average
pressures are highly nonlinear. Fig. 4(b) shows that the magnitude
of hp2i is much larger than that of hp1i because fluid 2 preferentially
occupies small tubes. Fig. 4(c) and (d) shows the effect of viscosity
ratio on the average pressure profiles for the two phases at a spec-
ified time. As the viscosity ratio increases, the non-monotonic
behavior of hp1i disappears.

Fig. 5(a) shows that the saturation is not a single valued func-
tion x=

ffiffi
t
p

when the viscosity ratio of two phases is non-zero.
Fig. 5(b) and (c) shows that the pressure difference hp1iI � hp1i of
fluid 1 at the interface and the pressure difference hp2i � hp1i be-
tween two phases depend not only on the saturation but also on
time t. Fig. 5(d) shows the drag coefficient C1s as a function of
the saturation S1 at different times. This coefficient is a weak func-
tion of time t, as no significant change of C1s is observed by chang-
ing the time t from 50 to 2000.

These results imply that a parameter in addition to the satura-
tion S1 is needed to uniquely determine the closure relationships.
In introducing the concept of dynamic capillary pressure, Hassan-
izadeh and Gray (1993), assumed that the dynamic part of the cap-
illary pressure was proportional to the local time derivative oS1/ot.
This idea can be generalized to model the closure quantities as
nonlinear functions of the saturation S1 and its local time deriva-
tive oS1/ot. In the bundle-of-tubes model, for a given pair of S1

and oS1/ot, there is a unique corresponding pair of x and t. With a
uniform distribution of diameters (given by the probability distri-
bution) between /S and /L, the required relationship can be found
as follows. By differentiating (5) and (11) with respect to t, and
then eliminating o//ot, from the resulting relations we find

1
t
¼ ð/

3
L � /3

S Þð2/Dpþ 4C21 cos bÞ
3/3ð/Dpþ 4C21 cos bÞ

oS1

ot
: ð34Þ

Using (11) the diameter / can be expressed in terms of satura-
tion S1 as

/ðS1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/3

L � S1 /3
L � /3

S

� �3
q

: ð35Þ

With (34) and (35), the time t can then be expressed as a func-
tion of saturation S1 and its local time derivative oS1/ot. Using (5)
and (35), position x can also be expressed as a function of the sat-
uration S1 and oS1/ot. The closure quantities calculated at (x, t) can
then be expressed as functions of these two primary variables, S1

and oS1/ot. These functions are shown in Fig. 6. For a fixed oS1/ot,
the relation between hp1iI � hp1i and S1 is non-monotonic as shown
in Fig. 6(a). At a small oS1/ot, this non-monotonic behavior is more
pronounced. For a given oS1/ot, initially the pressure difference
hp1iI � hp1i decreases with the saturation S1, but as the saturation
approaches unity, the pressure difference starts to increase. This
behavior may seem to be in contradiction to the pressure differ-
ence plotted in Fig. 5(b). To explain this apparent contradiction,
one needs to recall that these two figures are obtained under dif-
ferent conditions. Fig. 5(b) is obtained at a constant time whereas
Fig. 6(a) is obtained at a fixed oS1/ot (= �oS2/ot). According to (4),
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flow velocity increases with the tube diameter and the invading
fluid occupies the large tubes first. As the saturation S1 approaches
unity and saturation S2 approaches zero, the diameters of the tubes
containing fluid 2 (and thus the velocity of fluid 2) become small.
Thus, the second term in the continuity equation for fluid 2 be-
comes small and negligible

oS2

ot
þ S2r � hu2i þ hu2i � rS2 ¼ 0: ð36Þ

The pressure difference hp1iI � hp1i in Fig. 6(a) is obtained with fixed
oS2/ot, thus as velocity hu2i decreases, the magnitude of jrS2j in-
creases. Since the change in the saturation is caused by moving
across the fluid interfaces, the large saturation gradient indicates
a point close to fluid interfaces. Therefore the pressure difference
hp1iI � hp1i in Fig. 6(a) is calculated with the average pressure hp1i
evaluated at a point close to the interface; and thus the pressure dif-
ference is of lower magnitude as seen in Fig. 6(a). The same is true
for the pressure difference hp2iI � hp2i of fluid 2, however, it is not
shown in Fig. 6(b), because the minimum for this pressure differ-
ence occurs at saturation S2 � 10�8 according to the assumed prob-
ability distribution (29) of the tube diameters. Fig. 6(c) shows the
average pressure difference between two phases as a function of
S1 and oS1/ot.

Similar to the observation in Fig. 5(d), Fig. 7(a) and (b) shows
that C1S and C2S are functions of S1 but are almost independent of
oS2/ot. This explains why the permeability (the inverse of these
drag coefficients) is often reported not to be rate dependent,
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although it is often reported to be dependent on the degree of sat-
uration (Brooks and Corey, 1964; Braun et al., 2005).

In this simple bundle-of-tubes model, the static part of the cap-
illary pressure (Dahle et al., 2005), 4C21 cos b//, is only a function
of the saturation. This is because the tube diameter / is only a
function of the saturation as shown in (11) and (35). In Fig. 8, we
display the dynamic part of the capillary pressure
hp2i � hp1i � 4C cos b=/. Initially it was thought (Hassanizadeh
and Gray, 1993) that the dynamic part of the capillary pressure
was proportional to oS1/ot. Later Dahle et al. (2005) found that
when oS1/ot = 0, the dynamic part of the capillary pressure was
not zero. They then modified the dynamic capillary pressure to
contain two terms. The first term is a function of the saturation
S1 only. The second term is proportional to oS1/ot with a coefficient
depending on S1. For cases with l2� l1, hp2i ¼ 0 and hp1i is a
function of the saturation, as explained above. The dynamic part
of the capillary pressure is then a function of saturation only
and is independent of oS1/ot as shown in Fig. 8. However, for
the cases where l2 is not negligible, our results show that the
capillary pressure depends on oS1/ot in a non-linear manner.
The strongest response occurs at small values of oS1/ot. As oS1/
ot increases, the value of hp2i � hp1i � 4C cos b=/ approaches a
constant value.

To study the effects of the viscosity ratio, we fix the value of S1 at
0.5 and then plot hp2i � hp1i � 4C cos b=/ as a function of oS1/ot in
Fig. 9. The dynamic pressure is sensitive to oS1/ot for a small oS1/ot
and approaches a constant for a large oS1/ot. When the viscosity ratio
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between the receding and the invading fluids decreases, the satura-
tion rate dependent region of hp2i � hp1i � 4C cos b=/ expands.

4.3. Effects of reservoir pressure difference

To examine the effects of the pressure difference in the reser-
voir, we recalculate all the quantities in Figs. 6–8 with DP = 104

and plot the results in Fig. 10.
With the positive pressure difference Dp, there is a larger veloc-

ity increase in large tubes than that in small tubes as one would ex-
pect. The increase in the penetration of fluid 1 is also more
significant in larger tubes than that in small tubes, resulting in a
larger spread in the co-existence regions of fluids. This leads to
an increase in the average distance from a point x (where the aver-
age pressure is evaluated) to the interface where hp1iI and hp2iI are
evaluated. This results in more significant pressure differences
hp1iI � hp1i and hp2iI � hp2i in Fig. 10(a) and (b) than the pressure
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differences in Fig. 6 (a) and (b). The pressure difference hp2i � hp1i
between phases shown in Fig. 10(e), however, is almost the same
as in Fig. 6(c), because they are not directly related to external
pressures. The drag coefficients of CS1 and CS2 in Fig. 10(c) and
(d) are almost the same as those in Fig. 7(a) and (b). Again, the
behavior of dynamic part of the capillary pressure shows a nonlin-
ear dependence on oS1/ot in Fig. 10(f).

The average pressure difference hp2i � hp1i between phases is
commonly called the capillary pressure implying an assumption
that it is a result of surface tension. We now calculate a case with-
out the surface tension. We keep all other parameters the same as
in the last case except we set C = 0. The results of hp1iI � hp1i are
plotted in Fig. 11(a). The curves behave similarly to the case plot-
ted in Fig. 6(a), but with smaller magnitude due to the zero surface
tension. The results of hp2iI � hp2i are plotted in Fig. 11(b). The
pressure difference hp2iI � hp2i approaches zero as the saturation
S1 approaches unity. This property is also true for Fig. 6(b) but
was not shown in the figure since the minimum value of the pres-
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sure difference occurs at the saturation S1 too close to unity. As
shown in Fig. 11(c), the average pressure difference hp2i � hp1i is
not zero. In this case, this difference in average pressures is caused
by the viscosity difference between the fluids, not by surface ten-
sion. If the viscosity is the same as the cases studied by Dahle
et al. (2005), then the average pressures of the two phases are in
fact the same. In other words, not only the surface tension, but also
viscosity difference contributes to the pressure difference, or the
‘‘capillary pressure”.

5. Conclusions

In this paper, an ensemble phase averaging technique for con-
tinuous multi-material interactions is applied to derive averaged
equations for multiphase flows in porous media. The ensemble
averaged equations are found to have terms in addition to those
commonly used in Darcy’s law. Based on the bundle-of-tubes mod-
el, we studied properties of these additional terms. We find these
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i vs. S1 at different oS1=otin the case of C21 = 0.
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new terms correct many deficiencies in models based on the
straightforward extensions of Darcy’s law. We also studied the
relations between these new terms and several recent models for
two-phase flows in porous media.

Closure relationships were derived for the simple bundle-of-
tubes model. The closure can be written as functions of saturation
and the local time derivative of the saturation. The drag coeffi-
cients were found to be almost independent of the local time deriv-
ative of the saturation. Despite the name ‘‘capillary pressure”, the
difference in the average pressures of two fluids is not necessary
related to surface tension effects. Without surface tension, the
average pressures of the two phases are not necessary the same.
If the pressure difference can be decomposed into a static part, rep-
resenting surface tension effects, and a dynamic part, as suggested
by Dahle et al. (2005), then the dynamic part of the capillary pres-
sure not only affects the pressure difference, but also appears as
terms in the averaged momentum equations.

Although it is commonly assumed that a fluid imbibition pro-
cess can be modeled as a diffusion process, in the example we
show that this is not generally true. It is not necessary that the
velocity of the invading fluid decreases as 1=

ffiffi
t
p

. If the fluid being
displaced is more viscous than the invading fluid, the velocity
can even increase with time as fluid in the pores is replaced by
the less viscous invading fluid.

The results and conclusions obtained in this paper are based on
the simple geometry of the bundle-of-tubes model. Although we
have reason to believe that the closure relations obtained here
share many common features and trends in more complicated sys-
tems, more work is needed before these conclusions can be
generalized.
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